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A Note on Strongly Closed Subspaces in an Inner
Product Space

David Buhagiar1

We study some weak states on the orthocomplemented lattice F(S) of all strongly
closed subspaces in an inner product space. We show that F(S) always possesses two-
valued weak states, and we derive a characterization of (topological) completeness of
S in terms of two-valued weak states. We also prove an extension theorem for weak
states.
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1. INTRODUCTION

Suppose that S is an inner product space over real numbers. Let 〈. , .〉 de-
note the inner product on S. Following Maeda and Maeda (1970), let us con-
sider the subspaces of S which coincide with their double polar, i.e., let us set
F(S) = {A ⊂ S | A = (A⊥)⊥}, where A⊥ = {b ∈ S | 〈a, b〉 = 0 for each a ∈ A}.
Let us call an element of F(S) a strongly closed subspace of S. As shown in
Maeda and Maeda (1970), F(S) endowed with inclusion and polar orthocomple-
mentation is a complete orthocomplemented lattice which enjoys rather interesting
properties related to the theory of quantum logics (see Amemiya and Araki, 1966;
Dvurečenskij, 1993; Dvurečenskij and Pulmannová, 1988; Hamhalter and Pták,
1987; Pták, 1988; Pták and Weber, 1998).

It is an open question (Pták, 1988) whether or not F(S) possesses a finitely
additive state (the absence of the σ -additive states for S incomplete was shown
in Hamhalter and Pták (1987). It seems instrumental in connection with the latter
problem to study weak states first (a weak state is a certain natural generalization
of state, see Definition 1). In this note we concern ourselves with weak states,
obtaining the results stated in the abstract.
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2. RESULTS

Let F(S) denote the collection of all strongly closed subspaces of an inner
product space. We shall mainly deal with the following notion of weak state on
F(S).

Definition 1. A weak state on F(S) is a mapping w : F(S) → 〈0, 1〉 which sat-
isfies the following properties

1. w({0}) = 0,
2. w(M) + w(M⊥) = 1 for any M ∈ F(S),
3. if M ⊂ N , M, N ∈ F(S), then w(M) ≤ w(N ).

Let us denote the set of all weak states (resp. the set of all two-valued weak states)
on F(S) by Sw (F(S)) (resp. Sw

2 (F(S))).
In our first result we show that Sw

2 (F(S)) is always considerably rich.

Theorem 1. Let M ∈ F(S), M �= {0}. Then there is a weak state, w, on F(S)
such that w(M) = 1.

Proof: We first prove a lemma. �

Lemma 2. Let P ⊂ F(S) be a collection of subspaces which satisfies the fol-
lowing properties:

(i) if M ∈ P . then M⊥ /∈ P ,
(ii) if M ∈ P and M ⊂ N , N ∈ F(S), then N ∈ P ,

(iii) {0} /∈ P .

Then there is a collection Q, P ⊂ Q which satisfies all the properties (i), (ii),
(iii), and which enjoys the property of selectivity:

If K ∈ F(S), then card ({K , K ⊥} ∩ Q) = 1.

Proof: The proof follows the standard pattern of “maximality” proofs. Let us
denote by R the set of all collections P ′ ⊂ F(S) with the properties (i), (ii), (iii)
and with the property P ⊂ P ′. Let us order R by inclusion. Suppose that C is a
chain in R. Denote by D its union. Thus, D = ⋃

P ′∈C P ′. Then D again satisfies
(i), (ii), (iii).

Indeed, if M, M⊥ ∈ D, then M ∈ P1 and M⊥ ∈ P2 for some P1, P2 ∈ C . If
P1 ⊂ P2, then M ∈ P2 while ifP2 ⊂ P1, then M⊥ ∈ P1 – a contradiction. Further,
if M ∈ D and M ⊂ N , N ∈ F(S), then M ∈ P for some P ∈ C . Hence, N ∈ P
which gives N ∈ D. The property (iii) is evident for D.

Let us proceed by Zorn’s lemma: There exists a maximal element, Q, which
satisfies all the conditions (i), (ii), (iii). Suppose that K /∈ Q. If L �⊥ K for every
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L ∈ Q, then by the possibility to add K and all T ⊃ K to Q, we infer that Q is not
maximal. Thus, there is some N ∈ Q such that K ⊥ N and therefore N ⊂ K ⊥. It
follows that K ⊥ ∈ Q and the proof of Lemma 2 is complete. �

Returning to the proof of Theorem 1, let us start off with the collection
M = {N ∈ F(S), M ⊂ N }. This M satisfies (i), (ii), (iii) and, by Lemma 2, M
can be enlarged to a selective one, Q. Letting then w(P) = 1 if P ∈ Q, we have
the desired two-valued weak state.

The abundance of two-valued weak states allows us in turn to prove the
following two results. (It should be observed that there is no analogue for the
(ordinary) states, see Dvurečenskij (1993)– there are no two-valued states on F(S).)

The first result which follows presents a certain completeness criterion.

Theorem 3. Let S be an inner product space. Then S is Hilbert if, and only if,
for each two-valued weak state w ∈ Sw

2 (F(S)) there is a (topologically) complete
subspace C ⊂ S such that w(C) = 1.

Proof: If S is Hilbert, then the statement is evident. Suppose that S is incomplete
and consider the subcollectionP ⊂ F(S) determined as follows (by a co-complete
space we mean a space the polar of which is complete)

P = {M ∈ F(S) | there is a cocomplete N such thatN ⊂ M}.
It is easily seen that we can writeP = {M ∈ F(S) | M is co-complete}. Obviously,
P satisfies (i), (ii), and (iii) of Lemma 2. Indeed, (ii) follows from the definition of
P and (i) and (iii) immediately follow from the fact that S is not complete. Using
Zorn’s lemma, we can find a maximal element, Q, containing P . This Q defines
a two-valued state, w ∈ Sw

2 (F(S)) as demonstrated above. Obviously, w(C) = 0
for every complete C ⊂ S (evidently, each complete subspace belongs to F(S)).
This proves Theorem 3. �

The next result shows that each state of a Boolean subalgebra of F(S) extends
over F(S) to a weak state. In other words, it is shown that the restriction of weak
states on an arbitrary Boolean subalgebra of F(S) is a surjection onto all states of the
subalgebra. By a Boolean subalgebra we naturally mean a complemented sublattice
which is a Boolean algebra in its own right. (Recall that by a state on a Boolean
algebra B we mean a mapping s: B → 〈0, 1〉 which satisfies the three requirements
of weak state and which, in addition, is additive: s(a ∨ b) = s(a) + s(b) provided
a ≤ b⊥.)

We would need the following strengthening of Theorem 1: If B is a Boolean
subalgebra of F(S) and if M ∈ F(S), M �= {0}, then there is a weak two-valued
state w on F(S) such that w(M) = 1 and, moreover, w is a state on B. Let us call
a weak state which is additive on B a B-additive weak state. (We omit the proof of



1740 Buhagiar

the above strengthening of Theorem 1 since it can be obtained by a straightforward
generalization of Lemma 2.)

Theorem 4. Let S be an inner product space and let B be a Boolean subalgebra
of F(S). Let s be a state on B. Then there is a weak state w ∈ Sw (F(S)) such that
w(A) = s(A) for each A ∈ B.

Proof: Let us first observe that Sw (F(S)) forms a convex subset of 〈0, 1〉F(S)

and that Sw (F(S)) is compact in 〈0, 1〉F(S) when understood with the Tychonoff
(=pointwise) topology. We will now use the adequate analogue of the technique
in Pták (1985) and Tkadlec (1991). Let us consider the set P of all partitions
of B (by a partition, P , of B we mean a finite mutually orthogonal collection
{P1, P2, . . . , Pn} ⊂ B such that

∨n
i=1 Pi = 1 in B). Obviously, P is a directed set

when ordered by the refinement relation. Let us set

FP = {w ∈ Sw (F(S)) | w is B-additive and w(Pi ) = s(Pi ) for each Pi ∈ P}.
Let us show that F = {FP | P ∈ P} is a filter base consisting of closed subsets of
Sw (F(S)). Since Sw (F(S)) is endowed with the pointwise topology, the fact that
every F is closed is obvious. To show that each FP is nonvoid, take two partitions,
P, R ∈ P , P = {P1, . . . , Pm}, R = {R1, . . . , Rn} and form the intersection parti-
tion Q = P ∩ R = {Pi ∩ R j | i ≤ m, j ≤ n}. Write Q = {Q1, . . . , Qd} and, for
each non-zero Qi , find a (two-valued) weakB-additive state w Qi ∈ Sw

2 (F(S)) such
that w Qi (Qi ) = 1. Then the mapping w Q = ∑

i≤ds(Qi ) w Qi is a convex combi-
nation of weak states on F(S) and therefore w Q ∈ Sw (F(S)). Since Q refines both
P and R, we easily see that w Q ∈ FP ∩ FR . Thus, F is a filter base.

The rest uses compactness in the standard manner. HavingSw (F(S)) compact,
there is an element, w , such that w ∈ ⋂

P∈PFP . By the definition of FP we
immediately see that w(A) = s(A) for each A ∈ B. The proof is complete. �
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Dvurečenskij, A. (1993). Gleason’s Theorem and Applications, Kluwer Academic, Dordrecht.
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